Experimental discovery of structure–property relationships in ferroelectric materials via active learning

نویسندگان

چکیده

Emergent functionalities of structural and topological defects in ferroelectric materials underpin an extremely broad spectrum applications ranging from domain wall electronics to high dielectric electromechanical responses. Many these have been discovered quantified via local scanning probe microscopy methods. However, the search has until now based on either trial error, or using auxiliary information such as topography structure identify potential objects interest basis intuition operator pre-existing hypotheses, with subsequent manual exploration. Here we report development implementation a machine learning framework that actively discovers relationships between polarization-switching characteristics encoded hysteresis loop. The loops their scalar descriptors nucleation bias, coercive bias loop area (or more complex functionals shape) corresponding uncertainties are used guide discovery automated piezoresponse force spectroscopy experiments. As such, this approach combines power methods learn correlative high-dimensional data, well human-based physics insights into acquisition function. For materials, workflow demonstrates path sampling points on- off-field largely different, indicating dominated by different mechanisms. proposed is universal can be applied range modern imaging other modalities electron chemical imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal experimental design for materials discovery

http://dx.doi.org/10.1016/j.commatsci.2016.11.041 0927-0256/ 2016 Elsevier B.V. All rights reserved. ⇑ Corresponding authors at: Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA (R. Dehghannasiri, E.R. Dougherty), Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA (T. Lookman). E-mail addresses: [email protected]...

متن کامل

morphology, geochemistry, mineralogy, and micromorphology of soils of hormozgan province in relation to parent materials

ویژگی های زمین شیمیایی، کانی شناسی، و میکرومورفولوژیکی خاک ها و سنگ مادر مربوطه در منطقه بین بخش های جنوبی زاگرس و خلیج فارس تا دریای عمان(استان هرمزگان، ایران) مورد بررسی قرار گرفت. هدف های این مطالعه شناسایی تغییرات در خصوصیات فیزیکی، شیمیایی، و ترکیب کانی شناسی خاک، مطالعه میکرومورفولوژی و تکامل خاک، و بررسی توزیع عنصر خاک بر اساس هوازدگی، پروسه های خاک و زمین شناسی جهت توصیف اثرات مواد مادر...

15 صفحه اول

Active Learning for Drug Discovery

by a generous gift from Ray and Stephanie Lane in support of graduate education in computational biology. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, donors or the U.S. Government. To my sweet wife and dear children. Abstract The use o...

متن کامل

Ferroelectric Optics:Optical Bistability in Nonlinear Kerr Ferroelectric Materials

Ferroelectric oxides with perovskite structure such as PbLaTiO3 (PLT), BaTiO3, PbTiO3, SrBi2Ta2O9 and LiNbO3 are very attractive class of materials which possess numerous useful properties such as high dielectric constant, large spontaneous polarization, and remarkable optical nonlinearity. Potential applications of these materials include real-time holography, correlation filtering and various...

متن کامل

Active Learning in Materials Science and Engineering

Active learning is not only a key element of CDIO syllabi, but is expected to increase student motivation, commitment and retention. The incorporation of active learning elements into a materials engineering programme is considered by means of three example modules. The implications of introducing these modules into a materials programme is discussed in terms of five Ts – their titles, testing,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Machine Intelligence

سال: 2022

ISSN: ['2522-5839']

DOI: https://doi.org/10.1038/s42256-022-00460-0